5.2.9. ONAP Heat Heat Template Constructs¶
5.2.9.1. Nested Heat Templates¶
ONAP supports nested Heat templates per the OpenStack specifications. Nested templates may be suitable for larger VNFs that contain many repeated instances of the same VM type(s). A common usage pattern is to create a nested template for each {vm-type} along with its supporting resources. The VNF module may then reference these component templates either statically by repeated definition or dynamically by using the resource OS::Heat::ResourceGroup.
5.2.9.1.1. Nested Heat Template Requirements¶
ONAP supports nested Heat Orchestration Templates.
As stated in Requirements (R-36582), (R-56721), and (R-30395), a Base Module, Incremental Module, and Cinder Volume Module may use nested heat.
A VNF’s Heat Orchestration Template MAY reference the nested heat statically by repeated definition.
A VNF’s Heat Orchestration Template MAY
reference the nested heat dynamically using the resource
OS::Heat::ResourceGroup
.
A VNF’s Heat Orchestration Template must
reference a Nested YAML file by name.
The use of resource_registry
in the VNF’s Heat Orchestration Templates
Environment File must not be used (as stated in R-67231).
As stated in requirement R-99646, a VNF’s YAML files (i.e, Heat Orchestration Template files and Nested files) MUST have a unique name in the scope of the VNF.
A VNF’s Heat Orchestration Template MUST have no more than two levels of nesting.
Two levels of nesting is defined as follows: A base module, incremental
module, or cinder volume module references a nested heat file either
statically or by using the resource OS::Heat::ResourceGroup
.
The referenced YAML heat file is the first level of nested heat.
If first level nested YAML file references a nested heat file, that file is
the second level of nested heat.
A VNF’s Heat Orchestration Template’s first level Nested YAML file
MUST NOT contain more than one OS::Nova::Server
resource.
A VNF’s Heat Orchestration Template’s second level Nested YAML file
MUST NOT contain an OS::Nova::Server
resource.
If a VNF’s Heat Orchestration Template’s resource invokes a nested
YAML file, either statically or dynamically
(via OS::Heat::ResourceGroup
),
the names of the parameters associated with the following resource
properties MUST NOT change.
OS::Nova::Server
propertyflavor
OS::Nova::Server
propertyimage
OS::Nova::Server
propertyname
OS::Nova::Server
property metadata key valuevnf_id
OS::Nova::Server
property metadata key valuevf_module_id
OS::Nova::Server
property metadata key valuevnf_name
OS::Nova::Server
property metadata key valuevf_module_name
OS::Nova::Server
property metadata key valuevm_role
OS::Nova::Server
property metadata key valuevf_module_index
OS::Nova::Server
property metadata key valueworkload_context
OS::Nova::Server
property metadata key valueenvironment_context
OS::Neutron::Port
propertyfixed_ips
, map propertyip_address
OS::Neutron::Port
propertyfixed_ips
, map propertysubnet
OS::Neutron::Port
propertyallowed_address_pairs
, map propertyip_address
OS::Neutron::Port
propertynetwork
OS::ContrailV2::VirtualMachineInterface
propertyvirtual_network_refs
OS::ContrailV2::VirtualMachineInterface
propertyvirtual_machine_interface_allowed_address_pairs
, map propertyvirtual_machine_interface_allowed_address_pairs_allowed_address_pair
,virtual_machine_interface_allowed_address_pairs_allowed_address_pair_ip
,virtual_machine_interface_allowed_address_pairs_allowed_address_pair_ip_ip_prefix
OS::ContrailV2::InstanceIP
propertyinstance_ip_address
OS::ContrailV2::InstanceIP
propertysubnet_uuid
Note that the parameters associated with properties not listed in R-708564
may change when past into a nested YAML file. For example,
OS::Nova::Server
property availability_zone
.
Requirement R-708564 was introduced with Generic Resource API (GR-API).
GR-API creates the new VNFC Object.
SDN-C matches the {vm-type}
in the OS::Nova::Server
resource in the
nested YAML file to the corresponding nfc_naming_code.
If the {vm-type}
name changes when the parameter names are passed into
the nested YAML file, SDN-C will not be able to match the
{vm-type}
to the nfc_naming_code, breaking the assignment logic
and ONAP assigns a default value (i.e., “DEFAULT”).
Instantiation will succeed with the incorrect VNFC Object
(i.e, contains the DEFAULT value). However, the default VNFC object will
cause issues for other ONAP applications/features.
All parameters defined in a VNFs Nested YAML file MUST be passed in as properties of the resource calling the nested yaml file.
A VNF’s Nested YAML file MAY be invoked more than once by a VNF’s Heat Orchestration Template.
A VNF’s Nested YAML file MAY be invoked by more than one of a VNF’s Heat Orchestration Templates (when the VNF is composed of two or more Heat Orchestration Templates).
Note that as stated in requirement R-00011, a VNF’s Heat Orchestration Template’s Nested YAML file’s parameter’s SHOULD NOT have a parameter constraint defined.
If a VNF’s Heat Orchestration Template’s nested YAML file is required to
expose a resource property to the invoking Heat OrchestrationTemplate,
an outputs:
statement must be used in the nested YAML file.
The invoking template references the property by using the intrinsic
function get_attr
that targets the resource invoking the nested YAML
file and references the parameter defined in the outputs
section.
5.2.9.1.2. Nested Heat Template Example: Static¶
incremental.yaml
resources:
dns_server_0:
type: nested.yaml
properties:
dns_image_name: { get_param: dns_image_name }
dns_flavor_name: { get_param: dns_flavor_name }
availability_zone_0: { get_param: availability_zone_0 }
DNS_shared_sec_grp_id: { get_param: DNS_shared_sec_grp_id }
oam_protected_net_id: { get_param: oam_protected_net_id }
dns_oam_ip_0: { get_param: dns_oam_ip_0 }
dns_name_0: { get_param: dns_name_0 }
vnf_name: { get_param: vnf_name }
vnf_id: { get_param: vnf_id }
vf_module_id: {get_param: vf_module_id}
nested.yaml
dns_0_oam_protected_port_0:
type: OS::Neutron::Port
properties:
name:
str_replace:
template: VNF_NAME_dns_oam_port
params:
VNF_NAME: {get_param: vnf_name}
network: { get_param: oam_protected_net_id }
fixed_ips: [{ "ip_address": { get_param: dns_oam_ip_0 }}]
security_groups: [{ get_param: DNS_shared_sec_grp_id }]
dns_server_0:
type: OS::Nova::Server
properties:
name: { get_param: dns_names }
image: { get_param: dns_image_name }
flavor: { get_param: dns_flavor_name }
availability_zone: { get_param: availability_zone_0 }
networks:
- port: { get_resource: ns_0_oam_protected_port_0 }
metadata:
vnf_id: { get_param: vnf_id }
vf_module_id: { get_param: vf_module_id }
vnf_name {get_param: vnf_name }
5.2.9.1.3. Use of Heat ResourceGroup¶
The OS::Heat::ResourceGroup is a useful Heat element for creating multiple instances of a given resource or collection of resources. Typically, it is used with a nested Heat template to create, for example, a set of identical OS::Nova::Server resources plus their related OS::Neutron::Port resources via a single resource in a master template.
OS::Heat::ResourceGroup may be used to simplify the structure of a Heat template that creates multiple instances of the same VM type.
However, there are important caveats to be aware of:
OS::Heat::ResourceGroup does not deal with structured parameters (comma-delimited-list and json) as one might typically expect. In particular, when using a list-based parameter, where each list element corresponds to one instance of the ResourceGroup, it is not possible to use the intrinsic “loop variable” %index% in the OS::Heat::ResourceGroup definition.
For instance, the following is not valid Heat for OS::Heat::ResourceGroup:
type: OS::Heat::ResourceGroup
properties:
. . .
resource_def:
type: my_nested_vm_template.yaml
properties:
name: {get_param: [vm_name_list, "%index%"]}
Although this appears to use the nth entry of the vm_name_list list for the nth element of the OS::Heat::ResourceGroup, it will in fact result in a Heat exception. When parameters are provided as a list (one for each element of a OS::Heat::ResourceGroup), you must pass the complete parameter to the nested template along with the current index as separate parameters.
Below is an example of an acceptable Heat Syntax for a ResourceGroup:
type: OS::Heat::ResourceGroup
properties:
. . .
resource_def:
type: my_nested_vm_template.yaml
properties:
names: {get_param: vm_name_list}
index: "%index%"
You can then reference within the nested template as:
{ get_param: [names, {get_param: index} ] }
5.2.9.1.3.1. OS::Heat::ResourceGroup Property count¶
A VNF’s Heat Orchestration Template’s OS::Heat::ResourceGroup
property count
MUST be enumerated in the VNF’s
Heat Orchestration Template’s Environment File and MUST be
assigned a value.
This is required for ONAP to build the TOSCA model for the VNF.
type: OS::Heat::ResourceGroup
properties:
count: { get_param: count }
index_var: index
resource_def:
type: my_nested_vm_template.yaml
properties:
names: {get_param: vm_name_list}
index: index
5.2.9.1.3.2. Availability Zone and ResourceGroups¶
The resource OS::Heat::ResourceGroup and the property availability_zone has been an “issue” with a few VNFs since ONAP only supports availability_zone as a string parameter and not as a comma_delimited_list. This makes it difficult to use a OS::Heat::ResourceGroup to create Virtual Machines in more than one availability zone.
There are numerous solutions to this issue. Below are two suggested usage patterns.
Option 1: create a CDL in the OS::Heat::ResourceGroup. In the resource type: OS::Heat::ResourceGroup, create a comma_delimited_list availability_zones by using the intrinsic function list_join.
<resource name>:
type: OS::Heat::ResourceGroup
properties:
count: { get_param: node_count }
index_var: index
resource_def:
type: nested.yaml
properties:
index: index
availability_zones: { list_join: [',', [ { get_param: availability_zone_0 }, { get_param: availability_zone_1 } ] ] }
In the nested heat
parameters:
availability_zones:
type: comma_delimited_list
description:
resources:
servers:
type: OS::Nova::Server
properties:
name: { get_param: [ dns_names, get_param: index ] }
image: { get_param: dns_image_name }
flavor: { get_param: dns_flavor_name }
availability_zone: { get_param: [ availability_zones, get_param: index ] }
Option 2: Create a CDL by passing the availability zone parameter into a nested heat template. An example is provided below.
base.yaml
availability_zone_list:
type: az_list_generate.yaml
properties:
availability_zone_0: { get_param: availability_zone_0 }
availability_zone_1: { get_param: availability_zone_1 }
create_virtual_machines:
type: OS::Heat::ResourceGroup
properties:
count: { get_param: count }
index_var: $INDEX
resource_def:
type: nest_file.yaml
properties:
index: $INDEX
availability_zone_0 : { get_attr: [availability_zone_list, general_zones ] }
. . .
az_list_generate.yaml
parameters:
availability_zone_0:
type: string
description: availability zone 0
availability_zone_1:
type: string
description: availability zone 1
outputs:
general_zones:
value: [
{ get_param: availability_zone_0 },
{ get_param: availability_zone_1 },
{ get_param: availability_zone_0 },
{ get_param: availability_zone_1 },
{ get_param: availability_zone_0 },
{ get_param: availability_zone_1 }
]
5.2.9.1.3.3. Nested Heat Template Example: OS::Heat::ResourceGroup¶
In this example, ocgapp_volume.yml creates volumes using a OS::Heat::ResourceGroup that uses nested heat by calling ocgapp_nested_volume.yml. ocgapp_volume.yml has an outputs: parameter ocgapp_volume_ids which is declared a input parameter of type: json in ocgapp_volume.yml.
This is an example of requirement (R-07443), where
a VNF’s Heat Orchestration Templates’ Cinder Volume Module Output
Parameter’s name and type MUST match the input parameter name and type
in the corresponding Base Module or Incremental Module unless the Output
Parameter is of the type comma_delimited_list
, then the corresponding
input parameter MUST be declared as type json
.
ocgapp_volume.yml
heat_template_version: 2014-10-16
description: Template for the volumes
parameters:
vnf_name:
type: string
label: OCG VNF Name
description: OCG VNF Name
ocgapp_volume_size_0:
type: number
label: Cinder volume 1 size
description: the size of the Cinder volume
constraints:
- range: { min: 100, max: 400 }
ocgapp_volume_type_0:
type: string
label: app vm 1 volume type
description: the name of the target volume backend for the first OCG APP
volume_count:
type: number
label: volume count
description: number of volumes needed
resources:
ocgapp_volume_resource_group:
type: OS::Heat::ResourceGroup
properties:
count: {get_param: volume_count}
index_var: index
resource_def:
type: ocgapp_nested_volume.yml
properties:
index: index
size: {get_param: ocgapp_volume_size_0}
volume_type: {get_param: ocgapp_volume_type_0}
vnf_name: {get_param: vnf_name}
outputs:
ocgapp_volume_ids:
description: ocgapp volume ids
value: {get_attr: [ocgapp_volume_resource_group, ocgapp_volume_id_0]}
ocgapp_nested_volume.yml
heat_template_version: 2014-10-16
description: nested heat
parameters:
index:
type: number
label: Volume Index
description: number of volumes to spin up
size:
type: number
label: Volume Size
description: size of the cinder volumes
volume_type:
type: string
label: Volume Type
description: type of cinder volumes
vnf_name:
type: string
label: VNF Name
description: vnf name
resources:
ocgapp_volume_0:
type: OS::Cinder::Volume
properties:
size: {get_param: size}
volume_type: {get_param: volume_type}
name:
str_replace:
template: VF_NAME_STACK_NAME_INDEX
params:
VF_NAME: { get_param: vnf_name }
STACK_NAME: { get_param: 'OS::stack_name' }
INDEX: {get_param: index}
outputs:
ocgapp_volume_id_0:
description: the ocgapp volume uuid
value: {get_resource: ocgapp_volume_0}
Below is a screen shot of parameter ocgapp_volume_ids from the OpenStack Horizon GUI showing the output.

The heat template below is a partial heat template,
ocgapp.yml
heat_template_version: 2014-10-16
#file version 1.0
description: OCG Apps template
parameters:
ocgapp_volume_ids:
type: json
description: Unique IDs for volumes
resources:
ocgapp_server_0:
type: OS::Nova::Server
properties:
. . . .
ocgapp_server_1:
type: OS::Nova::Server
properties:
. . . .
ocgapp_volume_attachment_0:
type: OS::Cinder::VolumeAttachment
properties:
volume_id: {get_param: [ocgapp_volume_ids, 0]}
instance_uuid: {get_resource: ocgapp_server_0}
ocgapp_volume_attachment_1:
type: OS::Cinder::VolumeAttachment
properties:
volume_id: {get_param: [ocgapp_volume_ids, 1]}
instance_uuid: {get_resource: ocgapp_server_1}
5.2.9.2. External References¶
Heat templates must not reference any HTTP-based resource definitions, any HTTP-based nested configurations, or any HTTP-based environment files.
- During orchestration, ONAP must not retrieve any such resources from external/untrusted/unknown sources.
- VNF images must not contain external references in user-data or other configuration/operational scripts that are specified via Heat or encoded into the VNF image itself.
Note: HTTP-based references are acceptable if the HTTP-based reference is accessing information utilizing the VM private/internal network.
Note that Namespaces in XML (defined at http://www.w3.org/TR/2009/REC-xml-names-20091208/) are allowed if the Heat Orchestration Template is describing and storing software configuration information. An XML namespace is identified by a URI reference. A Uniform Resource Identifier (URI) is a string of characters which identifies an Internet Resource. The most common URI is the Uniform Resource Locator (URL) which identifies an Internet domain address. Another, not so common type of URI is the Universal Resource Name (URN). The namespace URI is not used by XML the parser to look up information. The purpose of using an URI is to give the namespace a unique name.
5.2.9.3. Heat Files Support (get_file)¶
A VNF’s Heat Orchestration Template may contain the inclusion of text files
containing scripts or configuration files. The get_file
intrinsic
function returns the content of a file into a Heat Orchestration Template.
The support for the get_file
intrinsic function in ONAP is subject to the
following limitations:
If a VNF’s Heat Orchestration Template uses the intrinsic function
get_file
, the get_file
target MUST be referenced in
the Heat Orchestration Template by file name.
The get_file
target files are on-boarded to SDC in the same zip file
that contains the VNF’s complete Heat Orchestration Template.
See requirement R-511776.
A VNF’s Heat Orchestration Template intrinsic function
get_file
MUST NOT utilize URL-based file retrieval.
A VNF’s Heat Orchestration Templates intrinsic function
get_file
<content key> MAY be used:
- more than once in a VNF’s Heat Orchestration Template
- in two or more of a VNF’s Heat Orchestration Templates
- in a VNF’s Heat Orchestration Templates nested YAML file
5.2.9.4. Key Pairs¶
When Nova Servers are created via Heat templates, they may be passed a “keypair” which provides an ssh key to the ‘root’ login on the newly created VM. This is often done so that an initial root key/password does not need to be hard-coded into the image.
Key pairs are unusual in OpenStack, because they are the one resource that is owned by an OpenStack User as opposed to being owned by an OpenStack Tenant. As a result, they are usable only by the User that created the keypair. This causes a problem when a Heat template attempts to reference a keypair by name, because it assumes that the keypair was previously created by a specific ONAP user ID.
When a keypair is assigned to a server, the SSH public-key is provisioned on the VMs at instantiation time. They keypair itself is not referenced further by the VM (i.e. if the keypair is updated with a new public key, it would only apply to subsequent VMs created with that keypair).
Due to this behavior, the recommended usage of keypairs is in a more generic manner which does not require the pre-requisite creation of a keypair. The Heat should be structured in such a way as to:
- Pass a public key as a parameter value instead of a keypair name
- Create a new keypair within the VNF Heat templates (in the base module) based on an existing public key for use within that VNF
By following this approach, the end result is the same as pre-creating the keypair using the public key – i.e., that public key will be provisioned in the new VM. However, this recommended approach also makes sure that a known public key is supplied (instead of having OpenStack generate a public/private pair to be saved and tracked outside of ONAP). It also removes any access/ownership issues over the created keypair.
The public keys may be enumerated as a VNF Orchestration Constant in the environment file (since it is public, it is not a secret key), or passed at run-time as instance-specific parameters. ONAP will never automatically assign a public/private key pair.
If a VNF requires the use of an SSH key created by OpenStack, the VNF
Heat Orchestration Template SHOULD create the OS::Nova::Keypair
in the base module, and expose the public key as an output value.
This allows re-use of the key by ONAP when triggering scale out, recovery, or other day 1 operations.
Example (create keypair with an existing ssh public-key for {vm-type} of lb (for load balancer)):
parameters:
vnf_name:
type: string
lb_ssh_public_key:
type: string
resources:
lb_keypair_0:
type: OS::Nova::Keypair
properties:
name:
str_replace:
template: VNF_NAME_key_pair
params:
VNF_NAME: { get_param: vnf_name }
public_key: {get_param: lb_ssh_public_key}
save_private_key: false
5.2.9.5. Security Groups¶
OpenStack allows a tenant to create Security groups and define rules within the security groups.
Security groups, with their rules, may either be created in the Heat Orchestration Template or they can be pre-created in OpenStack and referenced within the Heat template via parameter(s). There can be a different approach for security groups assigned to ports on internal (intra-VNF) networks or external networks (inter-VNF). Furthermore, there can be a common security group across all VMs for a specific network or it can vary by VM (i.e., {vm-type}) and network type (i.e., {network-role}).
5.2.9.6. Anti-Affinity and Affinity Rules¶
Anti-affinity or affinity rules are supported using normal OpenStack OS::Nova::ServerGroup resources. Separate ServerGroups are typically created for each VM type to prevent them from residing on the same host, but they can be applied to multiple VM types to extend the affinity/anti-affinity across related VM types as well.
Example:
In this example, the {network-role} has been defined as oam to represent an oam network and the {vm-type} have been defined as lb for load balancer and db for database.
resources:
db_server_group:
type: OS::Nova::ServerGroup
properties:
name:
str_replace:
params:
$vnf_name: {get_param: vnf_name}
template: $vnf_name-server_group1
policies:
- anti-affinity
lb_server_group:
type: OS::Nova::ServerGroup
properties:
name:
str_replace:
params:
$vnf_name: {get_param: vnf_name}
template: $vnf_name-server_group2
policies:
- affinity
db_server_0:
type: OS::Nova::Server
properties:
...
scheduler_hints:
group: {get_resource: db_server_group}
db_server_1:
type: OS::Nova::Server
properties:
...
scheduler_hints:
group: {get_resource: db_server_group}
lb_server_0:
type: OS::Nova::Server
properties:
...
scheduler_hints:
group: {get_resource: lb_server_group}
5.2.9.7. Resource Data Synchronization¶
For cases where synchronization is required in the orchestration of Heat resources, two approaches are recommended:
- Standard Heat depends_on property for resources
- Assures that one resource completes before the dependent resource is orchestrated.
- Definition of completeness to OpenStack may not be sufficient (e.g., a VM is considered complete by OpenStack when it is ready to be booted, not when the application is up and running).
- Use of Heat Notifications
- Create OS::Heat::WaitCondition and OS::Heat::WaitConditionHandle resources.
- Pre-requisite resources issue wc_notify commands in user_data.
- Dependent resource define depends_on in the OS::Heat::WaitCondition resource.
Example: “depends_on” case
In this example, the {network-role} has been defined as oam to represent an oam network and the {vm-type} has been defined as oam to represent an oam server.
resources:
oam_server_01:
type: OS::Nova::Server
properties:
name: {get_param: [oam_names, 0]}
image: {get_param: oam_image_name}
flavor: {get_param: oam_flavor_name}
availability_zone: {get_param: availability_zone_0}
networks:
- port: {get_resource: oam01_port_0}
- port: {get_resource: oam01_port_1}
user_data:
scheduler_hints: {group: {get_resource: oam_servergroup}}
user_data_format: RAW
oam_01_port_0:
type: OS::Neutron::Port
properties:
network: {get_resource: oam_net_name}
fixed_ips: [{"ip_address": {get_param: [oam_oam_net_ips, 1]}}]
security_groups: [{get_resource: oam_security_group}]
oam_01_port_1:
type: OS::Neutron::Port
properties:
network: {get_param: oam_net_name}
fixed_ips: [{"ip_address": {get_param: [oam_oam_net_ips, 2]}}]
security_groups: [{get_resource: oam_security_group}]
oam_volume_attachment_0:
type: OS::Cinder::VolumeAttachment
depends_on: oam_server_01
properties:
volume_id: {get_param: oam_vol_1}
mountpoint: /dev/vdb
instance_uuid: {get_resource: oam_server_01}